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Study of the stability of motion with respect to a part of the variables [1] finds applica-
tion in various problems, particularly in those of the motion of systems with cyclic coor-
dinates, of nonholonomic systems, and others, The method of Liapunov functions has also
been found to be effective in the present problem [3—5],

Below we prove several theorems on the asymptotic stability and instability with
respect to a part of the variables, representing generalizations of certain known theorems
on the Liapunov method, Two examples are given,

Let us consider the following equations of perturbed motion of a system:
drg/dt = X, (t, Ty, oeny Tn) (s=1,...,n) (1)

where r, are real variables characterizing the deviations of the system from the unper-
turbed motion, ¢ is time and X5 (¢, zy, ..., &) are real functions defined and con-
tinuous for all ¢ > 0 in some region ¢ containing the point x = 0 , of the space
{zs). We assume that the functions X5 (¢, %y, ..., Zn) satisfy in G the conditions of
existence and uniqueness of the solutions s (¢; #y; T10s «-.+ Tng) of (1). These solu-
tions depend continuously on #, 2> 0 and z,, (r = 1. ..., r) and become equal to
Zsq at t == ty, moreover X, (¢, 0, ..., 0) = 0.

Let us consider the stability of the unperturbed motion & = 0 with respect to a part

of the variables [1], choosing for definiteness the variables xy, ..., z; (0 < %k < n).
We shall denote these variables by y; = z; (i = 1, ..., k), and the remaining
m = n — k 2> 0 variablesby z; = z,,; (j = 1, ..., m), i.e. we shall write the

vector Z in the form z = (yy, --- Yrs Z1» «+s-Zm) and call the stability with respect
to z; = y; (i =1, ..., k) the y-stability,
We consider the region G of the form
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When studying the asymptotic stability with respect to a part of the variables, we

shall follow the example of [2] in including the estimate of the region of attraction G,
in the definition of the asymptotic stability, The motion z = 0 shall be called asymp-
totically y-stable and the region G, of the space {x,} lies in the region ot y-attraction
of the point x = 0, if the motion is Y-stable and the following conditions hold :

lim y (¢; tyy o) =0, y (& ty, o) E Ty when I > t,, z, & G (3)

Here I, is some region of G specified in advance and @, is the region of perturba-
tions, We shall define for simplicity the regions I', and G, by the conditions
n
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respectively, and consider the region /' > [ , defined by the inequalities

ol <4, Iz <o (4)
When ] :+: oo, the motion x == 0 is asymptotically y-stable in the large, provided
that it is y-stable and the condition lim y (¢, £, 2,) == O for { —» co holds for
any || #, || no matter how large,
We consider the functions V' (z, z) defined and continuous together with their first

== ( for all ¢ ;> 0, and their derivatives V'(t, z} with respect to time arising from the
equations of perturbed motion,

We recall that ¥ (¢, ) i3 y-positive-definite in T, if a positive-definite function
w (y) exists such that the following inequality holds:

Vi, oyzw(y) for z= Ttz 0 (5)

The function V (¢, z) admits [2] an upper bound in y within the region [', the bound
becoming infinitely small at = -= ¢ (or more concisely, it has an infinitely small upper
bound in y) if a continuous function W (y) exists satisfying the conditions

[V, 2| <W() for 2T, t20, W(0) = ()

The sufficient conditions of y-stability are furnished by the theorem on stability with
respect to a part of the variables [3] which admits a converse resembling the Liapunov
theorem on stability,

We now consider the problem of asymptotic y-stability, introducing the notation
V() =V (t, o ta za)-

Theorem 1, If Egs, (1) are such that a y-fized-sign function V (Z, x} can be
found in the region I', whose derivative V' (¢, ) with respect to time is (by virtue of
these equations) a constant-sign function in the region I' having the sign opposite to
that of V, and furthermore V (f) — 0 as { — oo and if the inequality

sup [V (¢, 2); 2 | S M <inflV(t, 2); |yl =A< 4
2] << oo, t, <t << ool (M

holds, then the motion z = () is asymptotically y- stable and the region € lies in the
region of y-attraction of the point & == (.

Proof, Let V (i, z) be a y-positive-definite function, Then a positive-definite func-
tion w (y) can be found such, that the inequa'lity (5) holds in I' and V" (¢, z) C 0. Let us

set Db [V () gl =y fsl< oo fo <<t < oo

Since V (¢, z} is independent of ¢, it admits an infinitely small upper bound and it
follows that such A can be found for { , that V (s, z) <C ! when |z < A. Imposing the
condition that x| < A on the initial values xo we obtain, by virtue of the properties of
V (¢, z), the following inequalities:

wyy <V {t, 2) <V (o, 20) < 1

from which it follows that || y [ < A4 for all ¢ > t,. Consequently, if for given .11 and
A (A1 > A) the condition that V (£)—0 as t — oo and condition (7)both hold, then
w (y (t, to; zo)) — Oas ¢ — o and this, in turn, implies that | y (¢, fo;z0)] — 0 as ¢ — o,
Q.E. D,

Theorem 1 represents a generalization of a number of known theorems on asymptotic
stability with respect to a part of the variables [3— 57 whose conditions ensure that
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V () -+ 0 as £ — oo. The formulation of these theorems may also include the esti-
mates of G, similar to (7), Thus e, g. we have

Theorem 2, If Egs. (1) are such that a y-fixed-sign function V (¢, ) admitting
an infinitely small upper bound y (in ) exists in the region I', and its derivative
V' (¢, z)with respect to time is a fixed-~sign function in y (in z) in the region I, and
has the sign opposite to that of V, furthermore if condition (7) is satisfied, then the mo-
tion z = ( us asymptotically y-stable and region G, lies in the region of y-attraction
of the point x = 0.

Theorems of Krasovskii [2] and Chetaev [6] on asymptotic stability can also be extended
to embrace asymptotic stability with respect to a part of the variables,

Theorem 3, If Eqgs, (1) are such that their right-hand sides X (¢, x) are & peri-~
odic functions of time # or do not depend explicitly on ¢, the solutions z; (t; tgy Zo)
are bounded for all | z, | <C A and a y-positive-definite function V (¢, z) exists in r,
which is ¢ periodic in ¢ or does not depend explicitly on Z, satisfying the inequality
(), and furthermore, if its time derivative satisfies the conditions that V'(¢, z) < 0
in T and V'(¢, ) = O only at the points of the set M, the latter containing only parts
of the trajectories of the system (1) with exception of the solution = 0, then the
motion z == () is asymptotically y-stable and (;lies in the region of y-attraction of
the point z = 0.

Proof, Function Vv (t, z) satisfies the conditions of the theorem on stability with
respect to a part of the variables, therefore |y || < 4 when ¢ >t for all | xof < A.
The solutions z; (¢; to, o) are bounded by the condition of the theorem, consequently
all solutiens g (t; % o) of (1) are also bounded for all |z < A. Function ¥ (¢} is a
monotonous, nonincreasing function of time, consequently lim V () = V* when t — o0
exists and V (¢) > V* for all ¢ > #. Let us consider the sequence of points
A =z (to+ x®, 1 zo) (kK =1, 2,...), where O is the period of X (¢, z) with respect
to zime or is any positive number if X does not depend explicitly on time, The bounded
sequence of points z has a limit point z = z* and the relation V* =V (3, z*) holds
by virtue of the continuity and periodicity of V (¢,.z) . From this stage the proof of the
equation V* = 0 follows that given in the Krasovskii theorem [2],

We note that according to Yoshidzawa [7] the sufficient condition for all solutions
z (f; to; o) (or solutions z (; t4, x,)) of (1) to be bounded is, that a function V (Z, 2)
exists such that V (¢, ) > w (z) (or V (¢, ) > W (2)) where w (x) — oo as
| z]— o0 (w(z) > 00 as [ 2] — o) and V' (¢, 2) < 0.

Theorems 1 and 3 can be extended to embrace the asymptotic y-stability in the large,
provided that H = oo in (2), Moreover the conditions of these theorems must be supple-~
mented with the requirement that the functions ¥ (¢, z) admit an infinitely small upper
bound [2]in y as | y | — oo, i. e, that the positive-definite function w (y) in condition
(5) satisfies the condition that limw (y) = oo as | y | — co. Then any region w (y) < Vo
will be bounded and the proof of the asymptotic y-stability follow that of Theorems 1~
— 3, Of course, it is assumed here that V (¢, z) in Theorem 2 admits an upper limit
in y (in z) over the whole space | z || < oo, i, e, a continuous function W (y) (W (z))

exists uCh that  y ) < W) Vit 2) < W (), WO =0

and the solutions z; (¢; te, zo) in Theorem 3 are bounded for all Vzoll < 0.
Theorem 4, IfEgs, (1) are such that a function V (£, ) exists and satisfies the

following conditions [6]:
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(1) Function
Vit, 2) — 0(8) w(y) © (t) = 1)
is always positive when w (y) is positive~definite and independent of time and the func-
tion 0 () tends monotonously to infinity with increasing ¢ , and
(2) by virtue of these equations its derivative V" =Z 0, then the motion & = ()
is asymptotically y-stable and the range of possible values of y; is defined by the ine-

quality w(y) = Vo /048, Voo V(g 29) (8)

Proof. By the conditions of the theorem we have the following inequalities;

0(t) w (y) <Vt 2) <V

from which (8) follows, Since 6(t) — o0 as t — oo, then w (y (f; to; x0)) — 0 and
Ly (¢ to, wa} | — 0 as ¢ — .

We now assume that the right-hand sides of (1) are defined, continuous, bounded, and
satisfy the conditions of existence and uniqueness of the solution in the region

{20, | x| < H = const (4)

Theorem 5, IfEgs, (1) are such that a fixed-sign function V (¢, x) exists in some
region | | << H, << H , whose derivative with respect to time V' (¢, x)is a y-fixed-
sign function of sign opposite to that of ¥ and if condition (7) holds, then the motion
z == () is atable and asymptotically y-stable and ,lies in the region of y-attraction
of the point & - (.

The proof is elementary and is based on the Liapunov's theorem, and on the theorem
given in [5],

Example 1, We consider the equations of motion of a mechanical system near
its equilibrium position ¢; == ¢; == 0 (i = 1, ..., n) acted upon by potential gyroscopic
and dissipative forces

n

o oT aT ou . .o
e - = - - Zgiiqj -’rin gi{:'l"‘gj,' G 7i=1 ...m {(10)
i=1

AT
Total mechanical energy # == T — U of the system does not depend explicitly on time,
Let the dissipative forces Q; = Q; (g, .- » qns G1s --- » gn’) satisfy the conditions

Qg e 50,...,00=0, Qo ... 40Q q,7 <0

and let Q,q, -+ ...+ Qngn == 0 if and only ifallg;" =0 (i = 1.. .., n).
From Egs, (10) follows
dilfdt = Q" -t - ..+ Qnga’

this describes the dissipation of energy during any such motion of the system, for which
Ouqy + . . - Qngn'eet) when ¢ 3= to. The energy of the system as nonincreasing funce
tion tends to some limit /7* where H = H* as { — oo,
¥ H g, ... . gn, ¢ - yn))is a positive-definite function of ¢;, 7 (i == 1, . . .. n),

then at the beginning we have an isolated position of equilibrium asymptotically stable
by Theorem 1 as the energy // dissipates until the system reaches the coordinate origin
(H* - 0y [6]0 If H =< H (g, ... i g5 . - - gn’) is @ positive-definite function of its
arguments (k < n), then #* = 0 and the initial position is asymptotically stable in
and ¢, g, G =1, ..,m s 1. k).

If 17 (41 oqme GUe .o . qn’) is a positive-definite function of ¢iy ¢s (i = 1, . . ., 1
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s =1, ..., k) and some reasons (e, g, if H — oo when Q}iﬂ + G"T,\-+z+ R )
imply that the variables ¢,y - - -, ¢n Temain bounded when t 2= ‘o, then H* = 0 and
by Theorem 3 the initial position is asymptotically stable in ¢;" and ¢, (i =1, ..., n;
s=1, ..., k).

In certain cases the asymptotic stability with respect to a part of the variables can
be deduced even when the boundedness with respect to the remaining variables is not
known in advance, We consider a particular example [5] of the motion of a heavy mass
point along a surface, with the viscous friction present, when the energy

H= 1@+ y? 4 %) 4- Vo gy (1 -+ 2?)

is a positive-definite function of the variables ', y', y. By Theorem 1 the initial posi-
tion r=y=z =y =0 is asymptotically stable in ', y', y variables.

Example 2. We consider a motion near the position of equilibrium ¢; = ¢; =
=0 (i = 1, ..., n) of a system with linear nonholonomic constraints, [8, 9] acted upon
by potential and dissipative forces Q; (i = 1, ..., k) of the same form as those in the
previous example, Using the equations of motion in the form given by Voronets we
obtain the following expression for the rate of dissipation of energy:

K
ddt (T — U) == ) Qa;
=1

we assutie that Q¢ - ...+ Qwgx’ =0 when and only when all ¢ =0 (i =1, ..., k).
If the force function U {qy, ..., ¢n) and the expression
: o & aU
2 ()(/ Z 0(1 ri
i=1 r==g+1
are both negative-definite with respect to the variables ¢; (i = 1, ..., k), then the

function 7 — U is positive-definite with respectto ¢; and ¢;" (i = 1, ... , k, ] = 1, ..,
., r) and the generalized potential forces Q;* == 0 in the neighborhood of the posi-

tion of equilibrium provided that ¢; == 0 (i == 1, ... , k). Under these conditions dissipa-
tion of energy takes place until the time when all velocities ¢;° become equal to zero
g =0 (i =1, ..., k). It follows that if the variables ¢, (r = k& + 1, ... , n) remain
bounded for ¢ > fo, then 7' — U — 0 as { — oo and by Theorem 3 the initial position
is asymptoucally stable in ¢; and ¢;' (i = 1,...,k),

we use the opportunity here to remark, that asymptotic stability of the position of
equilibrium with respect to ¢; and ¢;" (i = 1, ..., k) is established with the help of the

function (3, 4) of [8] under the assumption that the fixed-sign property of U/ emerges
from its quadzatic term in the Maclaurin expansion,

Let us now consider the instability,

As we already noted in [3], the general theorem of Chetaev [6] on instability can be
used in our study of the instability with respect to a part of the variables. It can easily
be shown that this theorem allows the following formulation :

Theorem 6, IfEqs, (1) are such that a function V (¢, y) can be found which is
bounded in the region V (¢, y) > 0 existing at any ¢ > {, and for arbitrarily small
absolute values of the variables ¥;,and whose derivative Vi(z, ) is, by virtue of these
equations y-positive-definite in the region V (¢, y) =0, then the motion z = 0 is
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y-unstable,

The proof follows that given in [6] in every detail, As both Liapunov theorems on
instability follow from the Chetaev theorem [6], so the analogs of the Liapunov theorem
on y-instability follow from Theorem 6, On inspecting the function V (f, y) it is easi-
ly seen that the analog of the first Liapunov theorem on instability is obtained from the
Liapunov theorem under the condition that the derivative V'(f, x) isa y-fixed-sign
function. The analog of the second Liapunov theorem is formulated in exactly the same
manner, To confirm this, it is sufficient to note that if the function V (¢, y) admits
an infiritely small upper bound, then the y-fixed-sign function U (t, x) is a fixed-sign
function in the region V (¢, y) > 0. The function V'(¢, z) =- AV (¢, y) + W (1, )
is the y-fixed-sign funciion in the region where V (#, y) assumes the sign coinciding
with the sign of the constant-sign function W (£, x) == 0. If on the other hand W =0,
then V" is fixed-sign in both regions V > (O and V < 0 [6].
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