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Study of the stability of motion with respect to a part of the variables [l] finds applica- 

tion in various problems, particularly in those of the motion of systems with cyclic coor- 

dinates, of nonholonomic systems, and others. The method of Liapunov functions has also 

been found to be effective in the present problem [3-51. 
Below we prove several theorems on the asymptotic stability and instability with 

respect to a part of the variables, representing generalizations of certain known theorems 

on the Liapunov method. Two examples are given. 

Let us consider the following equations of perturbed motion of a system : 

dx,/dt = X,(t, x1, . . . . x,) (s = 1, . . ., n) (1) 

where z’, are real variables characterizing the deviations of the system from the unper- 

turbed motion. t is time and X, (t, x1, . . . , z,) are real functions defined and con- 

tinuous for all t > 0 in some region (T containing the wint z = 0 , of the space 

{zs}. We assume that the functions X, (t, x1, . . . . 5,) satisfy in G the conditions of 

existence and uniqueness of the solutions zs (t; t,; 510, . . . . xno) of (1). These solu- 
tions depend continuously on to > 0 and x,0 (F = 1. . . . . n) and become equal to 

X80 at t == to, moreover X, (t, 0, . . . . 0) E 0. 
kt us consider the stability of the unperturbed motion J: = 0 with respect to a part 

of the variables [l]. choosing for definiteness the variables a+, . . . . xh (0 < k < n). 
We shall denote these variables by yi = zi (i = 1, . . . , k), and the remaining 

m = n - k > 0 variables by zj = xk+j (j = 1, . . . . m), i.e. we shall write the 

vector J: in the form az : (yr, . . . , yk, zl, . . . , z,) and call the stability with respect 

to zi = yi (i = 1, . . . . k) the y-stability. 
We consider the region G of the form 

II Y II = (gl yi2j”‘S If = con& [[z/J = (i qy*< oL7 (2) 
j=l 

When studying the asymptotic stability with respect to a part of the variables, we 
shall follow the example of p] in including the estimate of the region of attraction GA 
in the definition of the asymptotic stability. The motion z = 0 shall be called asymp- 
totically y-stable and the region (& of the space (x8} lies in the region of y-attraction 

of the point x = 0, if the motion is y-stable and the following conditions hold : 

lim y (t; t,, x0) = 0, y (t; to, x0) E Tu when t 2 t,, x0 E 6 (3) 

Here rlj is some region of G specified in advance and Gh is the region of perturba- 

tions. We‘ shall define for simplicity the regions I’, and Gk by the conditions 
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respectively, and consider the region f’ 3 rFj defined by the inequalities 

II !I II G n > II 2 II < co (4 
When H : 00, the motion .z 7~. 0 is asymptotically !/-stable in the large, provided 

that it is y-stable and the condition linl y (t, t,, x0) --= 0 for i -,- cm holds for 
any I/ 5” /I no matter how large, 

We consider the functions I’ (t, X) defined and continuous together with their first 

order partial derivatives in the region (4) for all t ,; 0 satisfying the condition 1’ (L, (I) -= 
= 0 for all t _a 0, and their derivatives V’(t, 5) with respect to time arising from the 

equations of perturbed motion. 
We recall that Ii’ (t, Z) is y-positive-definite in i‘, if a positive-definite function 

up (.y) exists such that the following inequality holds: 

I/ (1. s) b w (y) for 5 E r, t > 0 (5) 

The function V (t, X) admits @] an upper bound in 11 within the region f, the bound 
becoming infinitely small at x = o (or more concisely, it has an infinitely small upper 

bound in y) if a continuous function W (y) exists satisfying the conditions 

I v (t, J) I c w (Y) for I E I-, t ;a 0, w (0) =z 0 (ki, 

The sufficient conditions of y-stability are furnished by the theorem on stability with 

respect to a part of the variables [3] which admits a converse resembling the Liapunov 
theorem on stability. 

We now consider the problem of asymptotic y-stability, introducing the notation 

V (t) = V (t, 5 (t; t,, cc*)). 
Theorem 1. If Eqs. (1) are such that a y-fixed-sign function i/ (t, X) can be 

found in the region r, whose derivative v (t, x) with respect to time is (by virtue of 

these equations) a constant-sign function in the region 1‘ having the sign opposite to 

that of V, and furthermore V(t) -+ 0 as t --t 00 and if the inequality 

Sup fV (t,, x); /J x 11 < RI < inf IV (t, x); 11 y /I -= A, < .a 

II 2 I] -=E CQ 7 t,<t<ml (7) 

holds, then the motion z ---= 0 is asymptotically y- stable and the region i$ lies in the 

region of y-attraction of the point z =: 0. 
Proof. Let V (f, Z) be a ~-positive-definite function. Then a positive-definite func- 

tion w (y) can be found such, that the inequality (5) holds in 1’ and V’ (t, X) < 0. Let us 

set I -.= inf [V (t, 2); I( y j\ z AI (1 2 I/ < .Q, to < t < Nl 

Since V (to, rj is independent of t, it admits an infinitely small upper bound and it 

follows that such 1 can be found for I , that V (to, Z) < f when i 5 11 < h. I~l~sing the 

condition that jj~o 11 < A on the initiai values 50 we obtain, by virtue of the properties of 
V (t, z) , the following inequalities: 

U’ (y) < V (t, zj < v (to, 50) < 1 

from which it follows that jj y jj < A for all t > to. Consequentlyy, if for given .~!I and 
j, (A, > h) the condition that 5’ (t)+O as t - me and condition (7)both hold, then 

w (y (t, to; 5”)) -j Oas 1 -- ‘x% and this, in turn, implies that \I y (t; to;zo)[l --+ 0 as t - w, 

Q. E. D. 
Theorem 1 represents a generalization of a number of known theorems on asymptotic 

stability with respect to a part of the variables [3-S] whose conditions ensure that 
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V (t) -+ 0 as t -+ cc. The formulation of these theorems may also include the esti- 
mates of Gk similar to (7). Thus e. g. we have 

Theorem 2, If Eqs. (1) are such that a y-fixed-sign function V (t, s) admitting 
an infinitely small upper bound y (in S) exists in the region r , and its derivative 

P’ (t, 5) with respect to time is a fixed-sign function in y (in 5) in the region r, and 
has the sign opposite to that of v, furthermore if condition (7) is satisfied, then the mo- 

tion x = 0 us asymptotically y-stable and region GA lies in the region of y-attraction 
of the point x = 0, 

Theorems of Krasovskii @] and Chetaev @] on asymptotic stability can also be extended 

to embrace asymptotic stability with respect to a part of the variables. 
Theorem 3. If Eqs. (1) are such that their right-hand sides X (t, 2) are 19 peri- 

odic functions of time E or do not depend explicitly on t, the solutions Zj (t; &, Zo) 

are bounded for all [ Q, 11 < a and a y-positive-definite function V (t, X) exists in r, 

which is 6 periodic in t or does not depend explicitly on 2, satisfying the inequality 

(7), and furthermore. if its time derivative satisfies the conditions that v(t, x) < 0 
in r and V’( t, x) = 0 only at the points of the set M, the latter containing only parts 

of the trajectories of the system (1) with exception of the solution x = 0, then the 
motion x = 0 is asymptotically y-stable and &lies in the region of y-attraction of 
the point x = 0, 

Proof. Function V (t, 5) satisfies the conditions of the theorem on stability with 

respect to a part of the variables, therefore \I y (1 < A when t >, to for all I\ xo\l < h. 
The solutions Zj (t; to, 20) are bounded by the condition of the theorem, consequently 

all solutions LC~ (t; to 20) of (1) are also bounded for all ]f~~\\ < A. Function V (t) is a 
monotonous, nonincreasing function of time, consequently lim V (t) = V* when t - 00 

exists and V (t) >, V* for all t >, to. Let us consider the sequence of points 

x(“) = 5 (to + E*‘, t,; 20) (k = 1, 2, , . .), where 6 is the period of x(t, 5) with respect 
to rime or is any positive number if X does not depend explicitly on time. The bounded 

sequence of points 5 (‘I has a limit point 2 = z* and the relation V* = V (to, s*) holds 

by virtue of the continuity and periodicity of V (t, .z) . From this stage the proof of the 

equation V* = 0 follows that given in the Krasovskii theorem @]. 
We note that according to Yoshidzawa n] the sufficient condition for all solutions 

x (t; t,; x0) (or solutions z (L; t,, x0)) of (1) to be bounded is, that a function V (t, X) 

exists such that V (t, x) 2 w (x) (or V (t, x) 2 w (z)) where w (x) -+ 00 as 

II J: II + O” (w (4 + 00 as 1 z I[ ---f co> and V’ (t, 5) < 0. 
Theorems 1 and 3 can be extended to embrace the asymptotic y-stability in the large, 

provided that H = m in (2). Moreover the conditions of these theorems must be supple- 

mented with the requirement that the functions v (t, Z) admit an infinitely small upper 

bound p] in !I as I) y n --P co, i, e. that the positive-definite function w (y) in condition 

(5) satisfies the condition that lim w (Y) = m as I( y II-+ CO, Then any region w (y) < VO 

will be bounded and the proof of the asymptotic y-stability follow that. of Theorems l- 
- 3 , Of course, it is assumed here that V (t, z) in Theorem 2 admits an upper limit 

in Y (in x) over the whole space [I I 11 < 03, 1. e. a continuous function IV (y) (W (5)) 

exists such that 
v 0, r) d w (Y) (V 0, 4 < w (I)), w (0) = 0 

and the solutions Zj (t; to, XO) in Theorem 3 are bounded for all II EO II < ce. 

Theorem 4. If Eqs. (1) are such that a function V (t, X) exists and satisfies the 

following conditions [6] : 



(1) Function 
v (t, Lt.) - 0 (tj w (y> (0 (t,) -= 1) 

is always positive when zu (.y> is positive-definite and independent of time and the func- 

tion 8 (t) tends monotonously to infinity with increasing t , and 

(2) by virtue of these equations its derivative V’ < 0, then the motion x .I- 0 

is asymptotically y-stable and the range of possible values of yi is defined by the ine- 

quality II’ (?J) 5.: V” / 0 .(t), V” -1 v (t,, a,) (3 

Proof. By the conditions of the theorem we have the following inequalities: 

0 (t) !L’ (y) < t’ (t, Lx) < vir 

from which (8) follows, Since 0 (1) - 33 as t + ‘i~7, then UT (y (I; to; ~~1)) + 0 a?d 

11 y (t; to; 7,) I/--+ 0 as t -1 ~3. 

We ROW assume that the right-hand sides of (1) are defined, continuous, bounded, and 

satisfy the conditions of existence and uniqueness of the solution in the region 

t > @, 11 s [I < 11 =T- const (!I) 

Theorem 5. If Eqs. (1) are such that a fixed-sign function V (t, J.) exists in some 

region jj x !( < If, ( H , whose derivative with respect to time F” (t, ,.t) is a y-fixPA- 

sign function of sign opposite to that of V and if condition (7) holds, then the motion 

X = 0 is atahle and asymptorically y-srabie and G>,lies in the region of !/-attraction 

of the point x : 0. 
The proof is elementary and is based on the Liapunov’s theorem, and on the theorem 

given in 153. 

Example I, We consider the equations of motion of a mechanical system near 

its equilibrium position qi -= vi == 0 (i = 1, . . . , n) acted upon by potential gyroscopic 

and dissipative forces 
n 

Total mechanical energy If -- T --- U of the system does not depend explicitly on time. 

Let the dissipative forces Qi L= Qi ((r,, . . . , qn, ql’, . . . , q,‘) satisfy the conditions 

Qi (Q . . . . v,,.; 0, , . . , 0) - 0, Qrgt’ + . . . --I- Q (J * .G< 0 I1 ?I. 

and let Q1ql’ -t- , . . -j- Qriqn’ -= 0 if and only if all qi’ = 0 (i ~: 1, . . . , n). 
From Eqs. (10) follows 

cM/clt r- Q1ql’ + - . . + f&.&In’ 

this describes the dissipation of energy during any such motion of the system, for which 

Q1Q1’ + * * * + Qn~n’+-l) when t 2 tr,. The energy of the system as nonincreasing func- 

tion tends to some limit Ii* where H > H* as t - CC. 

If H ((11, . . . , q/n, ‘/I: a** I t/,l’lis a positive-definite function of ~j, ‘ii’ (; == 1, . . ., n.), 
then at the beginning we have an isolated position of equilibrium asyrllptotically stable 

by Theorem 1 as the energy /I dissipates until the system reaches the coordinate origin 

(I!’ (1) [6]. If 11 = 7 /I (ill, . . . , f/n, q1’, . . ., qn’) is a positive-definite function of its 

arguments (k < 7z), then U* = 0 and the initial position is asymptotically stable in 

and Qi’, qs (i = 1, ..* , n; s 1 2 . . . , 1;). 
If I’ (iil! . . .‘/n, q1’. . . . . yn’i is a positive-definite function of qi’, (is (i --~ 1, . . ., rr; 
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s =: 1, . . .( k) and some reasons (e. g. if H h cs when &+1 + 4t+2+ - - -7 (?a + CQ) 
imply that the variables qk.+l, . . ., qn remain bounded when t > to, then H* = 0 and 

by Theorem 3 the initial position is asymptotically stable in qi’ and qS (i = 1, . . . , n; 
s = 1, . . . ) k). 

In certain cases the asymptotic stability with respect to a part of the variables can 
be deduced even when the boundedness with respect: to the remaining variables is not 

known in advance. We consider a particular example [5] of the motion of a heavy mass 

point along a surface, with the viscous friction present, when the energy 

is a positive-definite function of the variables x’, y’, y. By Theorem 1 the initial posi- 
tion z=~=z’=-?/‘-o is asymptotically stable in x’, y’, y variables. 

Example 2. We consider a motion near the position of equilibrium qi = qi- = 

= 0 (i = 1, .*. , n) of a system with linear nonholonomic constraints, [8, 91 acted upon 

by potential and dissipative forces vi (i = 1, . . . , k) of the same form as those in the 
previous example. Using the equations of motion in the form given by Voronets we 

obtain the following expression for the rate of dissipation of energy: 

We assuuie that Q1’ll’ + . ..-{-Qkqk’ =0 when and only when all qi’ =O (i -1, . . . . k) 

If the force function U (ql, ,.. , c/,-J and the expression 

are both negative-definite with respect. to the variables vi (i = 1, . . . , k), then the 

function T - U is positive-definite with respect to vi and qj’ (i = 1, . . . , k, i = 1, . . , 
. . . , c) and the generalized potential forces Qi * + 0 in the neighborhood of the posi- 

tion of equilibrium provided that qi + 0 (i L= 1, . . . , k). Under these conditions dissipa- 

tion of energy takes place until the time when all velocities q;’ become equal to zero 

qi . 10 (i = 1, *.. , Ic). It follows that if the variables qr (r = h- f I, . . . , n) remain 

bounded for t > to, then T -- U -, 0 as t --? n- and by Theorem 3 the initial position 
is asymptotically stable in vi and pi’ (i = 1: . . . ,k). 

We use the opportunity here to remark, that asymptotic stability of the position of 
equilibrium with respect to qi and qi’ (i =1 1, . . ., k) is established with the help of the 

function (3, 4) of [S] ilnder the assumption that the fixed-sign property of IT emerges 

from its quadtatic term in the Maclaurin expansion. 
Let us now consider the instability. 

As we already noted in [3], the general theorem of Chetaev [6] on instability can be 

used in our study of the instability with respect to a part of the variables. It can easily 

be shown that this theorem allows the following formulation: 
Theorem 6. If Eqs. (1) are such that a function IJ’ (t, y) can be found which is 

bounded in the region J7 (t, y) > 0 existing at any t! > t, and for arbitrarily small 
absolute values of the variables yi, and whose derivative v*( t, X) is, by virtue of these 

equations y-positive-definite in the region V (t, y) > 0, then the motion IL: == 0 is 
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y-unstable. 
The proof follows that given in @] in every detail. As both Liapunov theorems on 

instability follow from the Chetaev theorem [6], so the analogs of the Liapunov theorem 

on y-instability follow from Theorem 6. On inspecting the function V (t, y) it is easi- 

ly seen that the analog of the first Liapunov theorem on instability is obtained from the 
Liapunov theorem under the condition that the derivative V(t, x) is a y-fixed-sign 

function. The analog of the second Liapunov theorem is formulated in exactly the same 
manner. To confirm this, ir is sufffcfent to note that if the function V (t, y) admits 

an infinitely small upper bound, then the y--fixed-sign function U (t, X) is a fixed-sign 
function in the region V (t, y) > 0 . The function v’(t, X) =- hV (2, y) + W(L, X) 

is the y-fixed-sign function in the region where V (t, Y) assumes the sign coinciding 
with the sign of the constant-sign function w (t, Z) q#~ 0. If on the other hand l$’ - 0, 
then V’ is fixed-s@ in both regions V > 0 and V < 0 [S]. 
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